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Abstract

The concept of intuitionistic fuzzy G-modules and its properties including representation, reducibility
and injectivity are already defined by the author et al. In this paper, we extend this idea to define
semi-simplicity of intuitionistic fuzzy G-modules. The existence of a semi-simple intuitionistic fuzzy G-
module for every finite dimensional G-module is proved and the relationships of semi-simplicity with
other properties of intuitionistic fuzzy G-modules are also discussed.
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1. Introduction

As a generalization of L.A. Zadeh’s [13] fuzzy set, the concept of an intuitionistic
fuzzy set was introduced by K.T. Atanassov [1], [2]. Applying this concept to algebra, R. Biswas [3]
introduced the concept of intuitionistic fuzzy subgroups of a group and studied some of its properties.
Later on many mathematicians worked on it and introduced the notion of intuitionistic fuzzy subrings,
intuitionistic fuzzy modules etc. [6], [7] and [8]. Intuitionistic fuzzification of G-modules are made by
the author et al. in [9]. Many properties like representation, complete reducibility and injectivity of
intuitionistic fuzzy G-modules are discussed in [10], [11] and [12] respectively.

In this paper, we define semi-simplicity of intuitionistic fuzzy G-modules using
direct sum of intuitionistic fuzzy G-modules. We prove the existence of semi-simple intuitionistic
fuzzy G-modules on every finite dimensional G-module. We also obtain the relationship between
complete reducibility and semi-simplicity of intuitionistic fuzzy G-modules and relate intuitionistic
fuzzy injectivity with intuitionistic fuzzy semi-simplicity.

2. Preliminaries

Throughout this article, concepts and notation related with G-modules are mainly
taken from [4], [5] and concepts and notation related with intuitionistic fuzzy G-modules are taken
from [9], [10], [11] and [12].

Let G be a group and M be a vector space over a field K. Then M is called a

G-module if for every geG and meM, 3 a product (called the action of G on M), gmeM satisfies the

following axioms
i) lc-m=m, VmeM (1¢ being the identity of G)

i) (g-h)m=g-(h-m), VmeM, g, heG
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III) g~(k1m1 + kzmz) = kl(g -m1) + kz(g 'mz), Vkl, koe K: my, meeM and geG.

A subspace of M, which itself is a G-module with the same action is called
G-submodule of M. It can be seen that the intersection of G-submodules is again a G-submodule. A
non-zero G-module M is irreducible if the only G-submodules of M are M and {0}. Otherwise it is
reducible. A non-zero G-module M is completely reducible if for every G-submodule N of M, there
exists a G-submodule N* of M such that M = N @ N*. It is well known that G-submodules of
completely reducible G-modules are completely  reducible. For G-modules M and M*, M is
M*- injective if, for every submodule N* of M*, any homomorphism ¢ from N* to M can be

extended as a homomorphism y from M* to M. A G-module M is semi simple if there exists a family

n

of irreducible G-submodules M; such that M =_®1|v|i. It is evident that completely reducible G-
i=

modules are semi simple.

Let G be a group and M be a G-module over K, which is a subfield of C. Then an
intuitionistic fuzzy G-module on M is an intuitionistic fuzzy set A = (ua, va) of M such that

following conditions are satisfied
(i) pa(ax + by) > pa(x) A pa(y) and va (ax + by) < va(x) v va(y), V a, beK and x, yeM and
(i) pa (gm) > pa (M) and va (gm) < va(m), Vge G; meM.

The standard intuitionistic fuzzy intersection of finite number of intuitionistic fuzzy

G-modules is again an intuitionistic fuzzy G-module, while standard union and compliment need not

n n
beso. If M = @l M, is a G-module and A is an intuitionistic fuzzy G-module on M; V i, then 691 A
1= 1=

is defined by [6_91 A j (x) = (,uéA 0. v, (x)j, where

n
i=1 i=1

. (X)=min x):i=1 2,..,ntand v, (X)=max x) =1 2,....,n,Vx=nxi M,x eM,
b, 09 {1, (%) } 00 v, (%) } 2HEM % <M,

is an intuitionistic fuzzy G-module on M called the direct sum of intuitionistic fuzzy G-modules A,

i =1,2,...,n. An intuitionistic fuzzy G-module A on M is completely reducible if

(i) M is completely reducible,

(ii) M has at least one proper G-submodule and

(iii) Corresponding to any proper decomposition M =M, @ M,,, there exists intuitionistic fuzzy G-
modules A; on M;, i =1, 2, such that A=A @ A with A (A1) # A (A2) [ i.e., set of double pinned

flags for the intuitionistic fuzzy G-module A; = set of double pinned flags for the intuitionistic fuzzy
G-module Az ].
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Let M and M* be G-modules. Let A = (x,,v,) be any intuitionistic fuzzy G-module
on M and B = (45, V) be any intuitionistic fuzzy G-module on M*. Then A is B-injective if
(i) M is M*- injective.

(ii) pe(m) < pa(y(m)) and ve(m) > va(y(m)), V yeHom (M*, M) and m eM*.

3. Semi-simple intuitionistic fuzzy G-modules

Definition (3.1) An intuitionistic fuzzy G-module A on M is said to be semi-simple if M is semi-

n n
simple G-module with decomposition M = @l M, and A= @1 A, where A; is an intuitionistic fuzzy
G-module on M;, YV i.

Example (3.2) Let G={1,-1}and M = Q(\/E ) over Q . Then M is semi-simple G-module with
M= Q(\/E )=Q® \/5 Q. Let A be an intuitionistic fuzzy set on M be defined by

1 ifa=b=0 0 if a=b=0
p(a+~+2b)=11/2 if az0andb=0 and v,(a+~2b)=1{1/4 if a=0andb=0.
1/5 if b=0 1/2 if b#0

Define intuitionistic fuzzy sets A; and A; on Q and \/E Q as follows:

@] 1 a0 ol O a0
= , 1% = . , e
Ha 172 if a£0 A 1/4 if a£0

1 ifb=0
2b) =
t4, (/20) {1/5 if b0

0 ifb=0

. v beO.
12 ifbzo’ " PEQ

, vAQNEb):{

Then A; and A, are intuitionistic fuzzy G-modules on Q and\/z Q respectively such that
pa@++/2 b) =, (a) A g1, (V2b) and v, (a++2 b)=v, (a)vv, (v2b), Va+~+2 beM.

Therefore, A=A @ A, . Hence A is a semi-simple intuitionistic fuzzy G-module on M.
n n
Proposition (3.3) Let M be a semi-simple G-module with decompositionM = @1 M, If A= _@lAl
i= j= 1

n
and A, = J_(v?lA2j are two semi-simple intuitionistic fuzzy G-modules on M, then A N A, is also a

semi-simple intuitionistic fuzzy G-module on M, where n denotes standard intuitionistic fuzzy

intersection.

Proof: The standard intuitionistic fuzzy intersection of fuzzy G- modules is an intuitionistic fuzzy G-

module defined by (AlmAz)(x)z(yAmA2 (%), Vana (x)), where
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Hpn, (00 =Min{ s, (%), 1, ()} and vAmAQ(x):max{vAi(x), v (9], w:ixi eM.

i=1

Hin, () = in {1, (%), 2, ()]
= min{mingu, (). g, (%), oo, ()1 MG, 00),t1, (%), s 1y, (%)}

= min {mingu, (4), i, 0} Mingay, (), s, ()} Mingy (6), 25, (%)}

= ity (0 o, O g, ()]

= min{yBl(xi),sz(xz), ........... Mg, (xn)},where B, = A, N A, isan IFG-module on M,V i.
=, (%)

and
Vi (X) = max{vAl(x), VAQ(X)}
= max{max{v,&n(xl),v%(xz), ...... Va1 max{v, (4),v (X)) e vAZH(xn)}}

max {max{y, (), v, ()1 Max{Vy, (%), Vi, () MaXEY ()12, (%)}

MaX{V i, (Vi oy (Ko Vi ()]

= max{vBl(xl),vBZ (X)) ereeenene Ve, (xn)},where B, = A, nA, isan IFG-module on M.,V i.

= Vés (%).

So, ANnA = @Bia where B, = A, N A, is an intuitionistic fuzzy G-module on M.,V i=12,...,n.

Hence A N A, is a semi-simple intuitionistic fuzzy G-module on M.

Proposition (3.4) Any finite dimensional G- module with dimension at least 2 has a semi-simple
intuitionistic fuzzy G-module.

Proof: Assume that M is a G-module with dimension n > 2, and {m1, ma,...., my } is a basis for M.

n
Let Mi = span {mi}. Then M is semi-simple with M = ®M;..

i=1l
Define an intuitionistic fuzzy set A on M by
1 ;if ¢, =0Vi
1/2 ;if ¢,# 0,¢c,=¢,=0,....,c, =0

1/3 ;ifc,# 0,¢,=¢,=0,...,c, =0
Uy(Cm+C,My+...ee. +c.m,) =

1/n ;ifc. ,# 0,c,=0
1/n+1 ;ifc, #0

and
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0 ;ifc,=0Vi
1/n+1; if ¢, # 0,c, =0,.....,c, =0

1/n ;if c,# 0,c;=0,....,c, =0
vacm+c,m,+.......... +c.m,) = :

1/2 ;ifc, #0
Define intuitionistic fuzzy sets Aion M; by

(X) = 1 if x=0
Aot =017001 i x 20

Then it can be easily checked that

0 if x=0
and v, (x)= . . ;VXeM; .
1/n-i+2 if x=#0

pa(m) =mindg, (Gm;):i=12,...,n} and v,(m) =max{v, (cm):i=12,...,n} where m = %cimi eM.
Thus Azg A, hence the result.

4. Semi-simplicity and other properties

The semi-simplicity of an intuitionistic fuzzy G-module is related to properties like
complete reducibility and intuitionistic fuzzy injectivity of intuitionistic fuzzy G-modules. These
relationships are derived in the following propositions

Proposition (4.1) For any finite dimensional G-module M, semi-simple intuitionistic fuzzy G-
modules on M are completely reducible.

n
Proof: Let A be a semi-simple intuitionistic fuzzy G-module on M. Assume that M = @1 M, and
=

n
A =® A where A are intuitionistic fuzzy G-modules on irreducible G-submodules M; of M.
i=1

Let N be any G-submodule of M. Then N is spanned by the elements {m;, mo,............. ,ms} of a basis
{m1, my, ...,ms, Ms41, ...., my} OFf M. Let N’ be the submodule spanned by the remaining basis vectors.

TheanNG-)N’andforanyx:in e M, we have

yA(x):min{yAl(xl),yAz(xz), ........... ,y,%(xn)}
N {Min{ety (%), £, (), oo (61 MLt (60)s b, (Xe,2)s s g, (%))

min{y

= min{,uBl(x),,uBz (x)},where B, =_<JialA and B, = CJna A are IFG-modules on N and N’

i=s+1

Do

(), 1, (X)}
1 i:?+1A

A

= Hp s, (x)

and
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VA () =max{v, (%), v, (), oo Vi (xn)}

= max{max{vAl(xi),vAQ(xz), ...... v (%)} max{y, (X)) va (Xeo),s cenn vﬁ(xn)}}

=max{vs x), v, (x)}
A DA

= max{vBl(x), sz(x)},where B,=®A and B,= @ A are IFG-modules on N and N'

= Vges, (X).
Thus A = B, ®B,. This shows that A is completely reducible.

Proposition (4.2) A completely reducible intuitionistic fuzzy G-module A on n dimensional

G-module M is semi-simple if ,uA(Zn:xij:min{yA(xl),yA(xz), .................. , M, (X)) and

i=1

Va (Zn: X; ] =max{y, (X)), Va(X,), eeeene. Va(X,)}, forevery Zn:xi eM.

i=1
Proof. Since A is completely reducible, so M is completely reducible and hence M is semi-simple.

Let M; be the G-submodule of M spanned by the basis vector {m;} of a basis {mi, my,...,my} of M.

n n
Then M :Er)lMi, and let X = E X; € M Dbe any element. Then
i=

i=1

() = 2, (2% ) = Min{ap (), 25 (%), cvvvveviviinnne. , 1, (x )} and
VA() =V (D0 %) = Max{y, (%), Va (Xo)sereonininiinan. Va(x)}

n
As A is completely reducible, for the decomposition M; @ N; of M, where N, = €r)2 M., Ais
1=

decomposed into A=A @ A', where A and A’ are intuitionistic fuzzy G-modules on My and N;
respectively.

Hence 1, (x) =min{u, (x,), H (%)} and v, (x) =max{v, (x,), Ve (x)}, where X, =X, + X, +...+X,.
Similarly, for every decomposition M; @ N; of M, we can find intuitionistic fuzzy G-modules

A and A'so that

(%) < MINLaty (%), 41 06 ) tty (%,)} AN V0 (0) = MAXEY,, (). (%), ()} (3)

Equation (2) gives that z,(X) = u, () and  v,(X)=v, (x) which together with (1) proves

200 = Min{ 21, (), 225, (%), vvvvves 1y (%)} AN 1, () SMIN{V, 06,V 06D, Vi (%)} (4)
Equation (3) and (4) together gives
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w1 (X) = min{ue, (%), tn, (X)) 0enee iy (X0} and v, (X) =max{v, (%), va (X5), e va (%)}
Thereby making A= .6}1 A, where Aj’s are intuitionistic fuzzy G-modules on M;. This proves that A
is semi-simple.

Proposition (4.3) If M* is a semi-simple G-module, then M is M*-injective for every G-

module M.

n
Proof. Semi-simplicity of M* gives M~ = @l M, . Let N* be any G-submodule of M* and ¢ be a
i=

homomorphism from N* to M.

Case (i) If N* = {0}, then ¢ =0 and y = 0 is an extension of ¢ from M* to M.

Case (ii) If N* = M;, then wy(C,M;+C,M,+.......... +C,M, ) =¢ (Ci m;) is an extension of ¢ from

M* to M.
k

Case (iii) If N*:_CJBlMi ,k<n, then
1=

y(cm+Cc,m,+.......... +C,m,)=0o(C,M+C,M,+......... +C, M, ) gives the required extension.

This proves that every G-submodule M is M*-injective.

Proposition (4.4) If G is a finite group and B is a semi-simple intuitionistic fuzzy G-module on M*,
then for any intuitionistic fuzzy G-module A on M, Ais B - injective if and only if A is B; - injective
for every i.

Proof. Since B is asemi-simple intuitionistic fuzzy G-module on M* . So, M*:_EBlMi, and

B= I(-:Bl B,, where B; is an intuitionistic fuzzy G-module on M;.

Let us first assume that A is B-injective, then we have

(i) M is M*- injective and

(ii) pe(m) < pa(yw(m)) and ve(m) > va(y(m)), V yeHom (M*, M) and m eM*.

Since M is M*- injective and M; is a G-submodule of M. Therefore, M is Mi-injective,V i =1, 2,.....,n
and (iii) s5(M;) = 5 (w(m;)) and vg(m)=vy (w(m)) Vi=12..n

Let y be any homomorphism in Hom(M;, M). As M is M*- injective, every homomorphism from M;

to M can be extended as a homomorphism from M* to M.
Let o is an extension of y to Hom( M*, M). Then from (i), (ii) and (iii), we get

115, (M) < 1, ((M)) = 1, (w () and vy (M) 2 v, (@(M)) =v,(w (M), ¥ v € Hom(M*, M).
This proves that A is Bi-injective for every i = 1,2,......n.

Conversely, assume that A is Bi-injective for every i = 1,2, .....,n. Then by proposition (4.3) we have

n
M is M*-injective. Let weHom (M*, M)and m eM* . Then m = glmi ,m eM,.
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Now, 5 (M) =min { g (M,), 15, (M,), e 1 (M)} < 1 (M)
and vB(m):max{vBl(rry),sz(mz), ........ Ve (M)} 2Ve (M), Vi=12,....n.
Since A is Bi- injective, therefore we have
s (M) < 1, (w(m)) and v (M) 2 v, (w(m)), Vi=12,....n.
Hence g (m) <min{u,(w(m)) 1i= 12,..,n} and vy(m) > max{v,(w(m)) :i=12,..,n}
Therefore, sz, (M) < 22,y (M) + /(M) + ...+ (M)} = 22, (w (M)
and vy (M) 2v,{y(m)+y(m)+....+w(m)}=v,(y(m)).
i.e., s (M) <y, (w(m)) and vy (M) 2v,(w(m)), V v e Hom(M*, M) and me M *.
Thus A'is B, —injective.
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