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Abstract 

The multiphase flow in porous media is a topic of various big complexities for a long time in the field 

of fluid mechanics. This is a subject of important technical applications, most probably in oil recovery 

from petroleum reservoirs and also in others. The single phase fluid flow through a porous medium is 

generally defined by Darcy’s law. In the petroleum industry and in other technical applications, the 

transport phenomenon is modeled by postulating a multiphase analysis of the Darcy’s law. In this 

analysis, the distinct pressures are defined for each phase with the difference and well known as 

capillary pressure. That is determined by the interfacial tension, geometry of micro pore and the 

chemistry of the surface related to the solid medium. In regarding flow rates, the relative permeability 

is defined that gives the relationship between the volume flow rate of each fluid and the pressure 

gradient. In the present paper, there is an analysis about the mathematical laws and equations for the 

slightly compressible flow and rock and the analysis and important results have been founded. The 

analysis show that velocity of fluid related to any phase is inversely proportional to the viscosity of 

the fluid. The capillary pressure of the capillary tube is inversely proportional to the radius of tube 

and increases with increasing values of the surface tension of the fluid. It also varies inversely with 

the radii of curvature for the interface of the fluid. The pressure exerted by the fluid varies positively 

with its velocity and varies inversely with the absolute permeability of the porous medium. 

Keywords: Multiphase flow motion, Porous media, Darcy’s law, Compressible rocks. 
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1. Introduction  

The consideration of porous media within a multi-scale framework is an emerging 

concept that takes advantage of the different mature state of understanding which applies at smaller 

length scales as the method to give the details of larger scale systems. Many physical systems can be 

concerned with a sequence of length scales; that is associated with a particular mathematical 

formulation which describes the system behavior at that scale. The multi-scale frameworks obtained 

the relations between these different details that give a series of mathematical formulations.    

When these are applied to porous media the approach can be used to tie 

thermodynamic forms and conservation equations to which that apply at the pore-scale, otherwise 

known as the micro scale. This is of our use when macroscopic closure relationships are not suitable 

or incomplete then microscopic closure relations are usually better known. Microscopic simulations 

can be applied for giving insights into macroscopic phenomenon that gives simplifying assumptions, 

and generate suitable macroscopic closure relationships. These studies are heavily on computational 

analysis to give the real solutions for the microscopic analysis of porous medium flows. The 
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computational assumptions give opportunities for incorporate big and more realistic solutions of 

micro-analysis behavior into macroscopic modeling analysis.  

The Fluid mechanics analyses about the moving objects that include gases, liquids, 

plasmas and other solids. From a ‘fluid-mechanical’ point of view, the matter can be considered of 

consisting of fluid and solid in a single fluid system the difference between these two positions being 

that a solid can resist shear stress by a static deformation, which is impossible in fluid. But we can see 

that a distinction between the gas and liquid states of matter is impossible if temperature is above the 

critical point. The main differences between these two phases are due to the difference between their 

equilibrium density and compressibility, below the critical point. For the gaseous phase molecules 

move freely with respect to each other but in the controlled volume, the number of molecules changes 

continuously. Due to this analytical uncertainty, fluid density has no meaning unless the control 

volume is comparatively large for the intermolecular spacing. But, if the chosen is sufficiently large, 

then there could be variation in the bulk density of the molecules due to other effects. A reasonable 

value for such a volume is around 10
-9

 mm
3
 for liquids and gases at the atmospheric pressure. The 

main analytical problems are due to their physical dimensions that are much larger than this size so 

that they display fluid properties with practically continuous spatial variation. These fluids can be said 

as continuum and well defined derivatives of the suitable variables can be used to explain its 

dynamical properties. The equilibrium of these fluids are produced and thus maintained by the 

collisions of the molecules that occur in a characteristic time scale �. In the classical fluids, generally  � is of order of 10
−10

 to 10
−14

 seconds. As analyzed by U. Aaltosalmi et. al. [1], [8], the mean free 

path λ between collisions of the molecules is the related length scale. For the systems of various 

motions, the equilibrium states are non-homogeneous. The states of equilibrium due to the 

disturbances vary in time and length scales given by λ and t and the variables of the system have slow 

variations at the long wavelengths. For these variables, there are great amount of equilibrium 

collisions and some disturbances due to motion; these are small in space at all times for these 

variables. For determining that the above conditions the fluid dynamics are verified, the Knudsen 

number will be evaluated for the problem. The Knudsen number Kn is the ratio of the molecular mean 

free path Ȝ to a physical length scale Ȝ0 of the obstacles and flow channels and is given by U. 

Aaltosalmi et.al. [1], [8] i.e., 

Kn = Ȝ / Ȝ0                                                                                                                               (1) 

The multiphase flow term is used for the fluid flow relating of more than one phase or 

component. The flows taken in the multiphase have some level of phase or component separation at a 

scale well above the molecular level. That drops the enormous spectrum of various multiphase flows. 

In other words, it can be classified according to the state of the different phases or components which 

refers to gas, solids, particle or bubbly flows etc. Some results deal for a specific category of fluid 

flow for low Reynolds number suspension flows, dusty gas dynamics etc. But others relate with a 

specific application like as slurry flows, cavitations flows, aerosols, debris flows and fluidized beds 

etc. For the multiphase flow phenomenon, there are wide ranges of flows with a lot of applications. 

Almost all the processing technologies deal with the multiphase flow, from the cavitations pumps, 

turbines to electro photographic processes to paper making the pellet form of almost raw plastics. The 

quantity of granular material, coal, ore, grain etc., is essential to flow. Clearly the ability for 

prediction of the fluid flow behavior of these methods is central to the efficiency and effectiveness of 

those processes. For example, the flow of toner is the major factor in the quality and speed of electro 

photographic printers. The multiphase flows found everywhere of our atmosphere whether one 

considers rain, fog, snow,  avalanches, mud slides, sediment transport, debris flows, and countless 

other natural phenomenon. In the medical science, many biological and medical flows are multiphase 
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too, from blood flow to semen, laser surgery cavitations etc. There are two types of flows known as 

disperse flows and separated flows. The disperse flows relating of finite particles, drops or bubbles 

distributed in a connected volume of continuous phase. But the separated flows relating of two or 

more continuous streams of different type of fluids separated by interfaces. 

For studying the multiphase flows motion there is the necessity of a suitable model 

and the prediction for the characteristics of the flows and the phenomenon which they perform. The 

analysis was given by C. E. Brenen et. al. [6] that described the three different methods in which these 

models are as follows: 

(i) By using laboratory models with the suitable instrumentation. 

(ii) By using different equations and models related to flows.  

(iii) By using the size and power of computers for illustrating the complex behavior 

of the flows. 

So it is decided that in many applications in which full scale laboratory based models 

are needed. But, in most cases, the lab models must have a different type of scale than the prototype 

and so that a theoretical or computational model is much better for extrapolation for scaling the 

prototype. There are many cases, in which a laboratory model is unsuitable for different reasons. It is 

possible in many cases at distant time to use the Navier-Stokes equations for the various phases and to 

analyze the details of multiphase flow. If any of them phases become turbulent then the various type 

of challenge will be astronomical. So the simplification is much necessary in the real models for 

various types of multiphase flows. 

The two types of models are considered for the disperse flow i.e., trajectory models 

and the two fluid models. In the motion of disperse phase there is analysis by the help of motion of 

actual particles or larger particles. The details of the flow nearer each of the particles are taking into 

assumed drag, lift and forces of moment acting on the trajectory motion of the particles. The thermal 

analysis of particles can also be taken if it is suitable for doing. The trajectory models are very useful 

to study the granular flows with respect of nature of interstitial fluid. In next approach, two fluid 

models, the disperse phase is taking into consideration due to next continuous phase mixed and 

interaction with continuous phase. Now the analysis of the equations for the conservation of mass, 

momentum and energy are derived for the two fluid flows which included the interaction terms 

modeling the exchange of momentum, mass and energy relating to flows. C. E. Brenen et al. [6] had 

solved the equations by the help of computational or theoretical methods. Then the two fluid models 

neglect the discrete nature of disperse phase and approximating the effect on the continuous phase of 

motion. The theory of the separated flows will be analyzed as single phase flow equations in the two 

streams and combining them through suitable kinematic conditions at interface.  

The free streamline theory is the example of the implementation of strategy, and then 

the interface conditions used regarding this context are easy. 

 

Figure-1 (Porous medium filled with water and oil) 



International Journal of Pure and Applied Researches; 2016 Vol. 3(1), ISSN: 2455-474X 

31 | P a g e  

 

 
Figure-2 (Analytical scales in porous medium)  

The multiphase flow in the porous media is the important topic in the field of fluid mechanics due to 

its important applications in oil recovery from petroleum reservoirs. The single phase flow in the 

porous medium is governed by Darcy’s law. On the other hand, the modeling of multiphase flow 

remains an enormous technical difficulties and challenges. There is a big difference between the 

model equations in industrial applications and the general understanding of the micro scale physics 

analysis. For the petroleum industry and in some other technical applications the transport is modeled 

with the help of multiphase generalization of Darcy’s law given by P. M. Adler et.al. [2]. The distinct 

pressures are analyzed for every constituent phase with the difference said as capillary pressure, and 

determined with the help of micro pore geometry, interfacial tension and chemistry of the surface of 

the solid medium. In flow rates the relative permeability is defined which relates the volume flow rate 

of every fluid to the pressure gradient.  

The classic theories of the multiphase flow in porous media have been given by 

Wooding & Morel-Seytoux [12] in 1976 and Adler & Brenner in 1988 [2], [6]. The Darcy’s law is 
linear, but the true governing equation is nonlinear as derived by the experiment and micro scale 

analysis. In addition to surface tension, the fluid flow is shear thinning even if the fluids are 

Newtonian. The flow will lead to jamming if the pressure gradient is not enough to overcome surface 

tension and remove the droplets from a pore surface. The jamming phenomenon gives a difference 

between flows at constant pressure gradient and constant flow rate.  

2. Governing Equations and Conditions 

The fluid motion is given by the basic hydrodynamic equations, i.e., the equation of 

continuity is given by ܦ � + .ߘ ሺ� ݒሻ = Ͳ, ܦ =  ሺʹሻ                                                                  ݐ��

That gives the conservation of mass and momentum given by the equations: ܦሺ� ݒሻ + .ߘ ሺ�ݒ ݒሻ = ݌ߘ− + .ߘ � + ��                                                  ሺ͵ሻ 

Where ρ is the density, v is the velocity, p is the hydrostatic pressure, τ is the fluid shear tensor and g 

is acceleration due to external forces including gravity on the fluid. The equation of conservation of 

energy can be written as:     � ݐ݀ݑ̂݀ + .ߘሺ݌ ሻݒ = .ߘ ሺ� ߘ�ሻ + �                                                      ሺͶሻ 

Where k the coefficient of thermal conductivity of the fluid, T is temperature, ϕ is the viscous 

dissipation function and ̂ is the density of thermal energy. Here ̂ is given by 

̂=̂ (p, T), 

This is approximated as: 

d̂ ≈ cv  dT, 

Where cv is the specific heat. 



International Journal of Pure and Applied Researches; 2016 Vol. 3(1), ISSN: 2455-474X 

32 | P a g e  

 

In the Newtonian fluids the viscous stresses varies with velocity derivatives i.e., �ఈఉ = �ఈݑఉ                                                                                                                               ሺͷሻ 

Now the equation of momentum will be reduced to Navier-Stokes equation given by 

                                                 �ሺ�ݒሻ�ݐ + .ߘ ሺ�ݒ ݒሻ = ݌ߘ− + ݒଶߘߤ + ��                                    ሺ͸ሻ 

Here ȝ denotes the viscosity of the fluid. For the incompressible fluids, ρ is constant, and then the 
equation takes the form  �ݐ�ݒ + ሺݒ. ݒሻߘ = − ͳ� ݌ߘ + �ߤ ݒଶߘ + �                                        ሺ͹ሻ 

Where 
ߤ �⁄ =  .denotes the kinematics viscosity of the fluid ,ߥ

The equations for momentum and continuity are independent of T and will be solved 

with the help of the energy equation. The Navier-Stokes equation gives the nonlinear second order 

differential equations of four variables, i.e. pressure and three components of velocity which can be 

solved in time and space. The system is solved with the help of the equation of continuity and by 

using some boundary conditions such as known pressure or velocity at inlet and outlet or at the free 

surfaces. At solid fluid interfaces, the no-slip boundary condition is the main characteristic of all the 

viscous flows. That means, at a solid wall the fluid velocity is zero with respect to wall. So, we can 

solve the flow equations. If we consider the flow as frictionless then Navier-Stokes equation changes 

to the Euler equation that is as given:  � − ͳ� ݌∇ = ݐ�ݒ� + ሺݒ.  ሺͺሻ                                                                               ݒሻߘ

On integrating along the streamlines in the gravitational field given by  � = �̂݁̂ఈ                                                                                                              ሺͻሻ  
We get a relationship between velocity, pressure and the elevation of flow of fluid, the Bernoulli 

equation for the incompressible and steady flow is as given:  ݌ + ͳʹ ଶݒ� + ߙ�� =   ଵ                                                                               ሺͳͲሻܥ
Where C1 is the constant and α is the angle of elevation. 

The Bernoulli equation is related to the steady flow energy equation and is used with 

some conditions. in the case of stationary flow with low inertial forces, the term on the left hand side 

of eq.(6) can be neglecting and it changes to Stokes equation i.e.,    ∇ ݌ − � � =   ሺͳͳሻ                                                                                    ݒ ଶ∇ ߤ
The above equation is very important in experimental and theoretical work relating to 

flows in porous media, for that the fluid velocities are very low. In flow system given by the Stokes 

equation, the pressure drop varies with the fluid velocity and an experiment is used to cover this 

range. If the flow is symmetric and force is reversed then the streamlines remain unchanged. For the 

Stokes flow the fluid motion is regular and smooth i.e., the laminar flow. If the inertial forces are 

comparable to viscous forces i.e., by increasing the flow velocity, the flow begins to have instable and 

moves to the transitional state. If we still increase the velocity of flow then it becomes turbulent. [1], 

[8]. 
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The ratio of viscous and inertial forces gives some parameter for the nature of all Newtonian fluids, 

and the ratio is called the Reynolds number i.e., dimensionless and is defined as: �݁ = ߤܮ�� = ߥܮ�                                                                                     ሺͳʹሻ 

Where V is characteristic velocity and L is the length scales of flow. 

The Reynolds number Re gives criterion for dynamic similarity. For the two similar types of flow 

systems of different sizes, the flow rates have the same Reynolds number then they will form a similar 

flow pattern. There also exist some other dimensionless numbers and are important as the results or 

experiments performed to the real systems. In most of the cases, we have advantage to write the 

relevant quantities and equations in dimensionless form. For example, the dimensionless form of 

equation of continuity will be as given  ��∗�ݐ∗ + .∗ߘ ሺ�∗ݒ∗ሻ = Ͳ                                                                  ሺͳ͵ሻ 

 

3.1 Equations for the slightly compressible materils 

 

The equation of state in terms of fluid compressibility cf  is given as 

�ܿ = − ͳ� �[݌���] = ͳ� �[݌���]                                                     ሺͳͶሻ  
 

 

C. Zhangxin  et.al. [13] had expressed the fluid compressibility cf as a constant on a certain range of 

pressures [13] and integrating the equation (14), we have 

  � = �଴ ݁��ሺ�−�0ሻ                                                                     ሺͳͷሻ 
 

Here ρ0 is the density of the fluid at the pressure p0. By the Taylor’ theorem, we have 

  � = �଴ {ͳ + �ܿሺ݌ − ଴ሻ݌ + �ܿଶሺ݌ − !ʹ଴ሻଶ݌ + ⋯           } ሺͳ͸ሻ 

 

By neglecting the terms of higher powers and approximating, we get 

 

                             � ≈ {ͳ + �ܿሺ݌ −                                                                                              {଴ሻ݌
The compressibility is given by 

 ܿ� = ͳ� ݌݀�݀                                                                                 ሺͳ͹ሻ 

 

Again integrating both the side, we get � = �଴ ݁��ሺ�−�0ሻ                                                                   ሺͳͺሻ 
 

Here ϕ0 is the porosity at pressure p0. Also by the Taylor’ theorem, we have 

 � = �଴ {ͳ + ܿ�ሺ݌ − ଴ሻ݌ + ܿ�ଶሺ݌ − !ʹ଴ሻଶ݌ + ⋯           } ሺͳͻሻ 

This can also be approximated as: � ≈ �଴ {ͳ + ܿ�ሺ݌ −    ଴ሻ}                                                      ሺʹͲሻ݌
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So we have   ݀�݀݌ = ܿ��଴                                                                           ሺʹͳሻ  
After taking the differentiation on the left hand side of (22), we have { � ݌��� + � {݌݀�݀ ݐ�݌� = ∇. ቆ� ͳߤ ݌∇ሺܭ − ��̂∇�ሻቇ +  ሺʹʹሻ ݍ 

 

Put the approximated calculated values [13] in (32), we have �{ � �ܿ + ܿ��଴} ݐ�݌� = ∇. ቆ� ͳߤ ݌∇ሺܭ − ��̂∇�ሻቇ +  ሺʹ͵ሻ ݍ 

 

Let us taking, the total compressibility ct as given  ܿ� = �ܿ + �଴� ܿ�                                                                                   ሺʹͶሻ 

 

We have  �଴ ݁��ሺ�−�0ሻ�ܿ� ݐ�݌� = ∇. ቆ�଴ ݁��ሺ�−�0ሻ ͳߤ ݌∇)ܭ − �଴ ݁��ሺ�−�0ሻ�̂∇�)ቇ +   ሺʹͷሻݍ
 

4. Numerical Analysis 

Table-4.1 (Numerical values of the pressure exerted by the kerosene oil, water and turpentine oil in a 

porous media having the values of K between 1x10
-11

 to 25x10
-11

 m
2 
)  

 The table gives the values of calculated pressure of the three fluids, kerosene oil, water and turpentine 

oil.  

 

S.No.  Fluid    Viscosity   Velocity      p(Pa) x10
7
        p(Pa) x10

7
       p(Pa) x10

7
       p(Pa) x10

7
       p(Pa)x10

7
    

                                                                  for                          for                   for                   for                for    

                          ȝ(Pa s)  v m/sec.    K=1 x10
-11

m
 2    

K=2 x10
-11

m
2      

 K=5 x10
-11

m
2    

K=10 x10
-11

m
2
 K=25x10

-11 
m

2 

1.  Kerosene oil   640x10
-6

       1                  6.4                     3.2                 1.28                  0.64                 0.26 

                                                  2                12.8                    6.4                  2.56                  1.28                 0.52               

                                                  5                32                      16                    6.4                    3.2                   1.30    

                                                10         64                      32                  12.8                    6.4                   2.60 

                                                25               160                      80                  32                     16                      6.4                    

 

2.   Water            890x10
-6

        1                  8.9                   4.45                 2.97                 0.89                  0.36 

                                                  2                17.8                   8.9                   3.35                 1.78                  0.72 

                                                  5                44.5                 22.25                 8.9                   4.45                  1.80   

                                                10                89.0                 44.5                 17.8                   8.9                    3.60   

                                                25              222.5               111.25               44.5                 22.25                  9.00 

 

3.  Turpantine   1375x10
-6

      1                13.75                   6.875                2.75                1.38                  0.55 

      oil                                      2                27.5                   13.75                  5.5                  2.75                  1.1 

                                                5                68.75                 34.375              13.75                 6.88                  2.75          

                                              10              137.5                   68.75                 27.5                13.75                  5.5                                      

                                        25               343.75                171.875                68.75               34.50              13.75

  

 

5. Conclusion 

In the slightly compressible flow and rock, the motion is always governed by the law 

of conservation of mass and the Darcy’s law given by equation (30), which shows that the velocity of 

the fluid at phase α is inversely proportional to the viscosity of the fluid. The capillary pressure ݌� is 

inversely proportional to the radius of the tube and increases with increasing values of the surface 
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tension � of the fluid. It is also inversely proportional to the radii of curvature of the interface of fluid. 

The results also show that compressibilityܿ� depends on the porosity ϕ of the fluid and varies directly 

with the values of ϕ. The partial differential equation of the equation of motion for the slightly 

compressible flow and rock is given by equation (49). The variations of pressure through fluid with 

respect to velocity of fluid and permeability factor of porous medium are shown by the table. That 

shows that the pressure is directly proportional to the velocity of fluid and is inversely proportional to 

the permeability factor K of the medium. 
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