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Abstract 

The fluid mechanics theory of viscous lubrication was studied from the Navier-stokes 

equations by the tactic of consecutive approximations that was based mostly upon the size of film 

thickness. It had been supported that the primary approximation offers the Reynolds equation. The 

second order rotatory theory of fluid mechanics lubrication was supported on the expression obtained 

by holding the terms containing 1st and second powers of rotation number within the extended 

generalized Reynolds equation. In this paper, there are some new wonderful elementary solutions 

with the assistance of geometrical figure, expressions, calculated tables and graphs for the step 

bearing within the second order rotatory theory of fluid mechanics lubrication. The analysis of 

equations for pressure and load capacity, tables and graphs reveal that pressure and load capacity 

don't seem to be freelance of viscousness. Conjointly the pressure and load capacity each increase 

with increasing values of rotation range. The relevant tables and graphs ensure these vital 

investigations within the present paper. 
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1. Introduction 

The analysis of lubrication film was initially worked out by Osborne Reynolds in 1886, on the fluid 

flow matter through the converging passages, and it was for long accepted that the passages were 

necessary for film lubrication (Pinkus et al. 1961). In 1946, Fogg analyses the use of the thrust 

bearings with parallel faces, and given the explanation that the thermal expansion of lubricant 

generates the thermal wedge. More analysis in this context has been given by Bower in 1946 and 

Shaw in 1947 (Shaw et al. 1949). The temperature distribution in the bearings was observed by 

Christopherson in 1941 and Cameron & Wood in 1946 (Cameron, 1981).  

The fundamental equations of hydrodynamics were expressed by Cope in 1942 by assuming all the 

physical properties of the fluid as variables. The flow of lubricants obeys the basic laws of fluid 

mechanics i.e., the equation of conservation of mass and the momentum conservation equations. The 

assumption of incompressibility is the perfectly adequate in most of cases. The equation of continuity 

or the mass conservation equation for an incompressible fluid in Cartesian coordinates is given by 

div v = ∂vx /∂x + ∂vy /∂y + ∂vz /∂z = 0                                                               (1) 

The equation of momentum conservation or Navier-Stokes equation for a Newtonian fluid also in 

rectangular Cartesian coordinates (x1, x2, x3) is the statement of the balance of momentum along each 

of the three the xi directions 𝜌 𝜕𝑣𝑥𝑖𝜕𝑡 + 𝑣. ∇𝑣𝑥𝑖 = − 𝜕𝑝𝜕𝑥𝑖 + 𝜂∇2𝑣𝑥𝑖 + 𝜌𝑔𝑥𝑖 , 𝑖 = 1,2,3                                                (2) 
Here t is time, v = (𝑣𝑥1 , 𝑣𝑥2  , 𝑣𝑥3) is the velocity field vector and g = (𝑔𝑥1 , 𝑔𝑥2 , 𝑔𝑥3) is the gravitational 

acceleration vector. For analysis of the fluid flow in the lubricating films the following assumptions 

are commonly made.  

 Steady state conditions  

 Constant pressure through film 

 Negligible body forces  
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 Negligible inertia forces  

 Laminar flow 

 Constant fluid density  

 Newtonian fluid 

 No slip at boundaries 

 Rigid and smooth solid surfaces 

 Constant viscosity through film  

The equations resulting from introduction of above assumptions into the original governing equations 

of the fluid mechanics constitute the statement of the lubrication theory. The equations of fluid 

mechanics i.e., the equations of motion and continuity can be combined under the assumptions of the 

lubrication theory to yield an equation for computing the pressure inside the film, which is said to be 

Reynolds equation. In a Cartesian coordinate system, let the z-axis be located along the direction of 

film thickness h(x, y), whereas the span of liquid layer on the x−y plane is much larger than its 

thickness. Let the fluid motion be driven by relative velocity (U, V) and be restricted to the x−y plane. 

In the theory of hydrodynamic lubrication, the two dimensional classical theories (Cameron, 1981)
 

were first given by Osborne Reynolds (Reynolds, 1886). In 1886, as the result of a classical 

experiment by Beauchamp Tower, he formulated a differential equation, which was known as: 

Reynolds Equation (Reynolds, 1886).The formation and basic mechanism of the fluid film was 

analyzed by that experiment on taking some important assumptions given as: 

 The fluid film thickness is very small as compare to the axial and longitudinal dimensions of 

fluid film. 

 If the lubricant layer is to transmit pressure between the shaft and the bearing, the layer must 

have varying thickness. 

Later Osborne Reynolds himself derived an improved version of Reynolds Equation known as: 

“Generalized Reynolds Equation” (Dowson, 1962), which depends on density, viscosity, film 

thickness, surface and transverse velocities. The rotation (Banerjee et al. 1981)
 
of fluid film about an 

axis that lies across the film gives some new results in lubrication problems of fluid mechanics. The 

origin of rotation can be traced by certain general theorems related to vorticity in the rotating fluid 

dynamics. The rotation induces a component of vorticity in the direction of rotation of fluid film and 

the effects arising from it are predominant, for large Taylor’s Number, it results in the streamlines 

becoming confined to plane transverse to the direction of rotation of the film (Banerjee et al. 1981). 

The new extended version of “Generalized Reynolds Equation” is said to be “Extended Generalized 

Reynolds Equation”, which takes into account of the effects of the uniform rotation about an axis that 

lies across the fluid film and depends on the rotation number M,  i.e. the square root of the 

conventional Taylor’s Number. The generalization of the classical theory of hydrodynamic lubrication 

is known as the “Rotatory Theory of Hydrodynamic Lubrication”. The “First Order Rotatory Theory 

of Hydrodynamic Lubrication” and the “Second Order Rotatory Theory of Hydrodynamic 

Lubrication” was given by retaining the terms containing up to first and second powers of M 

respectively by neglecting higher powers of M (Banerjee et al. 1981).  

2. Governing Equations and Boundary Conditions 

 In the second order rotatory theory of hydrodynamic lubrication the “Extended Generalized Reynolds 

Equation” 
 
is given by equation (1). Let us consider the mathematical terms as follows:  
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𝜕𝜕𝑥 [  
 −√2µ𝑀𝜌 1𝑀( 

𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  −  𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +   𝑐𝑜𝑠 ℎ√𝑀𝜌2µ) 𝜕𝑃𝜕𝑥]  
 

+ 𝜕𝜕𝑦 [  
 −√2µ𝑀𝜌 1𝑀( 

𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  −  𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +   𝑐𝑜𝑠 ℎ√𝑀𝜌2µ) 𝜕𝑃𝜕𝑦]  
 
 

+ 𝜕𝜕𝑥 [  
 − ℎ𝑀 +√2µ𝑀𝜌 1𝑀( 

𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  +  𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +   𝑐𝑜𝑠 ℎ√𝑀𝜌2µ) 𝜕𝑃𝜕𝑦]  
 

− 𝜕𝜕𝑦 [  
 − ℎ𝑀 +√2µ𝑀𝜌 1𝑀( 

𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  +  𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +   𝑐𝑜𝑠 ℎ√𝑀𝜌2µ) 𝜕𝑃𝜕𝑥]  
 
 

= −𝑈2 𝜕𝜕𝑥 [  
 𝜌√2µ𝑀𝜌 ( 

𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ  +  𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ  +   𝑐𝑜𝑠 ℎ√𝑀𝜌2µ) ]  
 
 

−𝑈2 𝜕𝜕𝑦 [  
 −𝜌√2µ𝑀𝜌 ( 

𝑠𝑖𝑛ℎ ℎ√𝑀𝜌2µ −  𝑠𝑖𝑛 ℎ√𝑀𝜌2µ𝑐𝑜𝑠ℎ ℎ√𝑀𝜌2µ −   𝑐𝑜𝑠 ℎ√𝑀𝜌2µ) ]  
 

− 𝜌𝑊∗                                                                                                                  (2.1) 
Where x, y and z are coordinates, U is the sliding velocity, P is the pressure, ρ is the fluid density, µ  is 

the viscosity and W
* 

is fluid velocity in z-direction. The Extended Generalized Reynolds Equation in 

view of second order rotatory theory of hydrodynamic lubrication, in ascending powers of rotation 

number M
 
and by retaining the terms containing up to second powers of M and neglecting higher 

powers of M, can be written as equation (2). For the case of pure sliding 𝑊∗ = 0, so we have the 

equation as given: 𝜕𝜕𝑥 [− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )𝜌 𝜕𝑃𝜕𝑥] + 𝜕𝜕𝑦 [− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )𝜌 𝜕𝑃𝜕𝑦]+ 𝜕𝜕𝑥 [−𝑀𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 )𝜕𝑃𝜕𝑦] − 𝜕𝜕𝑦 [−𝑀𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 )𝜕𝑃𝜕𝑥]= − 𝜕𝜕𝑥 [𝜌𝑈2 {ℎ −𝑀2𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 )}]    − 𝜕𝜕𝑦 [𝑀𝜌2𝑈2 {− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )}]                                                          (2.2) 𝜕𝜕𝑦 [− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )𝜌 𝜕𝑃𝜕𝑦] + 𝜕𝜕𝑥 [−𝑀𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 )𝜕𝑃𝜕𝑦]= − 𝜕𝜕𝑥 [𝜌𝑈2 {ℎ −𝑀2𝜌2ℎ5120µ2 (1 − 31𝑀2𝜌2ℎ43024µ2 )}]   − 𝜕𝜕𝑦 [𝑀𝜌2𝑈2 {− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )}]                                                       (2.3) 
The step bearing was first used by Lord Rayleigh [4] in 1918. He used the calculus of variation to see 

which film shape had the biggest load-carrying capacity. He found the best was two parallel zones.  
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The geometry of step bearing is given by the figure- 1. The figure shows that the entry zone has a gap 

h1 and the exit gap is h2. 

 

 

Figure-1 (Geometry of Step Bearing) 

 

The figure shows that the runner move in the (-y) direction, which implies that the variation of 

pressure in x-direction is very small as compared to the variation of pressure in y-direction. So the 

terms containing pressure gradient ∂p/∂x can be neglected as compared to the terms containing ∂p/∂y 

in the differential equation of pressure, hence P may be taken as function of y alone. 

 

Taking h=h(y), U= -U, P=P(y)                                                                                                     (2.4) 𝑑𝑑𝑦 [− ℎ312µ
(1 − 17𝑀2𝜌2ℎ41680µ2 )𝜌 𝑑𝑃𝑑𝑦]= 𝜕𝜕𝑦 [𝑀𝜌2𝑈2 {− ℎ312µ(1 − 17𝑀2𝜌2ℎ41680µ2 )}]                                                           (2.5)  

When h is constant then the resultant pressures will be zero. Hence a bearing having a constant film 

thickness has no load capacity. However, if the film is parallel but has step in it such as shown in the 

figure, the bearing will produce hydrodynamic forces. 

The film thicknesses are taken as: 

h=h1 in the region B1,                                                                                                                   (2.6) 

h=h2 in the region B2.                                                                                                                   (2.7) 

The boundary conditions for the determination of pressure are: 

P=0, when y=0                                                                                                                             (2.8) 

P=Pc , dP/dy=0 at h=h*                                                                                                               (2.9) 

Where h* is determined by equating the two values of Pc derived in regions B1 and B2 respectively. 

3. Solution of Differential Equation 

Integrating equation (5) under the boundary conditions (8) and (9), we get the equations for pressure. 

The pressure for the region B1 is given by 𝑃 = 𝑀 𝜌𝑈𝐵22  { ℎ13 − ℎ23ℎ13𝐵2 + ℎ23𝐵1}𝑦 
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+𝑀2
[  
  17 𝐵2 𝑈 𝜌3𝑦3360𝜇2  (ℎ13 − ℎ23)(ℎ17𝐵2 − ℎ27𝐵1) − (ℎ17 − ℎ27)(ℎ13𝐵2 + ℎ23𝐵1)(ℎ13𝐵2 + ℎ23𝐵1) {𝑀 (1 + 17𝜌21680 𝜇2 (ℎ17𝐵2 − ℎ27𝐵1)(ℎ13𝐵2 + ℎ23𝐵1)𝑀2)} ]  

               (3.1) 
The pressure for the region B2 is given by 𝑃= 𝑀 𝜌𝑈𝐵12  { ℎ13 − ℎ23ℎ13𝐵2 + ℎ23𝐵1}𝑦

+𝑀2
[  
  17 𝐵1 𝑈 𝜌3𝑦3360𝜇2  (ℎ13 − ℎ23)(ℎ17𝐵2 − ℎ27𝐵1) − (ℎ17 − ℎ27)(ℎ13𝐵2 + ℎ23𝐵1)(ℎ13𝐵2 + ℎ23𝐵1)  

{𝑀 (1 + 17𝜌21680 𝜇2 (ℎ17𝐵2 − ℎ27𝐵1)(ℎ13𝐵2 + ℎ23𝐵1)𝑀2)} ]  
     (3.2) 

  

The load capacity W for step bearing is given by 𝑊 = 𝑀𝜌𝑈𝐿2 {1 − (17𝑀2𝜌2ℎ27 − 1680𝜇2ℎ23)(𝐵1 + 𝐵2)17𝑀2𝜌2(ℎ17𝐵2 − ℎ27𝐵1) − 1680𝜇2(ℎ13𝐵2 + ℎ23𝐵1)} ∫ 𝑦 𝑑𝑦 +𝐵10  

𝑀𝜌𝑈𝐿2 { (17𝑀2𝜌2ℎ17 − 1680𝜇2ℎ13)(𝐵1 + 𝐵2)17𝑀2𝜌2(ℎ17𝐵2 − ℎ27𝐵1) − 1680𝜇2(ℎ13𝐵2 + ℎ23𝐵1) − 1} ∫ 𝑦 𝑑𝑦           (3.3)𝐵20  

 𝑊 = 𝑀𝜌𝑈𝐿𝐵1𝐵2(𝐵1+𝐵2)4  

{  
  ℎ13 − ℎ23(ℎ13𝐵2 + ℎ23𝐵1) + 𝑀2 17𝜌21680 𝜇2 (ℎ13 − ℎ23)(ℎ17𝐵2 − ℎ27𝐵1) − (ℎ17 − ℎ27)(ℎ13𝐵2 + ℎ23𝐵1)(ℎ13𝐵2 + ℎ23𝐵1)(1 + 17𝜌21680 𝜇2 (ℎ17𝐵2 − ℎ27𝐵1)(ℎ13𝐵2 + ℎ23𝐵1)𝑀2) }  

     (3.4)  
 

4. Numerical Simulation 

By taking the values of different mathematical terms in C.G.S. system the calculated tables and 

graphical representations are as follows: 𝑈 = 80, 𝜌 = 1, 𝐿𝐵 = 1, ℎ1 = 0.0269, ℎ2 = 0.0167, 𝑒 = 0.2,µ = 0.0002,𝐵1 = 1, 𝐵2 = 0.5        
S. No. M P W 

1. 0.1 2.0565596 2.3136315 

2. 0.2 4.1131680 4.6172160 

3. 0.3 6.1337808 6.8946132 

4. 0.4 8.1358800 9.1528792 

5. 0.5 10.100488 11.363063 
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Figure-2 (Variations of Pressure and Load Capacity with respect to rotation number M) 

5. Conclusion 

The variation of pressure and load capacity for Step Bearings with respect to rotation number M, 

when viscosity is constant; are shown by table and graph.  

The logarithmic equations for the pressure and load capacity have been found and are as follows: 𝑃 = 4.879𝑙𝑜𝑔𝑒 𝑀+ 1.436; 𝑅2 = 0.951 ; 𝜇 = 0.0002                                                                      (5.1) 𝑊 = 5.490𝑙𝑜𝑔𝑒 𝑀+ 1.611;𝑅2 = 0.950 ; 𝜇 = 0.0002                                                                     (5.2) 
Hence in the second order rotatory theory of hydrodynamic lubrication, the pressure and load capacity 

for step bearings both increases with increasing values of M, when viscosity is taken as constant. The 

equations for pressure and load capacity show that both of them are not independent of viscosity, it 

varies with μ.  
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