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Abstract 

The purpose of this  research  paper is to  illustrate the theoretical concept of Galois Theory 

in the form of numerical  illustration  of field permutation and automorphism  under 

composition   By looking at the  effect  of a Galois group on field generators we can interpret 

Galois group as permutations, which makes it a  subgroup of a symmetric group . This makes 

Galois groups into relatively concrete and numerical              

and is  particularly  effective  when  the Galois  group turns  out  to be a symmetric or 

alternative group . 

 
FIELDS AUTOMORPHISM WITH RESPECT TO ROOTS  

 

    The Galois group of a polynomial f (X) ε K [X]   is defined to be the Galois group  

  of a splitting field for f (X) over K. We do not need f (X) to be irreducible in K (X).  

 

Example : 2.1   The polynomial   X
4
   -  2  has splitting field  Q (

4√ 2  , i  )  over Q .   
 

So the Galois group of X
4
 - 2 over Q is isomorphic to D 4. 

 .  

The splitting field of   X
4
 - 2 over R   is C, so the Galois group of X

4
 – 2 over R is 

                                                              _ 

Gal ( C / R )  =   {  z   →  z   ,    z   →  z    ) ,  which is cyclic of order  2 .  

 

Example 2 .2   Consider the polynomial   f (X)   =    X
4 – 2 over Q   We will construct  

 

Its Galois group.  f (x)   has four roots 

 

            
4 √ 2  ,             i 4√ 2  ,             -  4√ 2  ,               - i  4√ 2 .    

Splitting field is    Q (
4√ 2, i). Its degree is 4.  The mappings of   

4√2    and   i     

 

     are:  

 

 

                         
4√ 2    →  ±  

4√ 2 

                                                                       and      i     →   ± i              
 

                          
4√   

2   →  ± i  
4 √ 2 

 

 

Now we construct their permutations, as under  
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4√  2                i                                         4√2                   i  

i      =      (                                 )                   D  =       (                                 ) 

                   
4√ 2                  i                                           4√ 2              - i   

              

 

                     
4√ 2              i                                        4√ 2                     i  

A    =    (                                  )                   E   =   (                                    ) 

                - 4√ 2              i                                i  4√ 2                  -  i     

 

 
                4√ 2                 i                                            4√ 2                i  
B  =   (                              )                      F   =    (                                  )  

                i 
4√ 2                 i                                            -  4√ 2            -i   

 

 

               
4√ 2                i                                             4√ 2                   i  

C  =  (                                   )                        G   =  (                                   ) 

               - i 
4√ 2              i                                            -i  

4√ 2             - i    
 

Second approach of writing the above permutation is  

 

Automorphism   │     i         A            B            C          D           E             F          G  

-------------------------------------------------------------------------------------------------------- 

Value  on  
4√ 2  │  

4 √2        i 4 √2         - 4 √ 2        - i 4 √2       4 √2            i 4 √2      - 4 √ 2       - i 4√ 2  
…………………………………………………………………………………………… 

Value on  i       │     i         i             i                i          -i           -i           -i             - i  
………………………………………………………………………………………….. 
                                                 Table   1 

                             

The effect of mapping (m) on the roots of   f (x) =   x 
4
 - 2   is  

m ( 
4√ 2 )  =  i  4√ 2   ,  m ( i  4√ 2 )  =   -  4√ 2  ,       m (  -  

4√ 2 )    =  -  i  4√ 2  )  
 

m (- i  
4√ 2 )  =   4√ 2  .  It is a  4 – cycle.  The effect of the mapping (n) on the roots of   f(x) 

=   x
4
   -  2  is, 

 

n ( 
4√ 2 )  =  4√ 2 ,   n (  i  4√ 2 )  =  - i  4√ 2   ,     n  ( - i  4√ 2 ) =   i  4√ 2  

 

n ( -  
4√ 2 )  =   -  4√ 2  . This map (n)  swaps  i  

4√ 2     and  - i  4√ 2 , while  fixing   
4√ 2    and  

-  
4√ 2  .  So   n   is a  2 – cycle  on roots.    

Renaming the roots of   f (x) = x
4
  -   2   as:                              

 

2.1      r 1   =   
4√ 2  ,    r 2     =   i  

4√ 2 ,      r 3   =  -   
4√ 2  ,    r 4   =  - i   

4√ 2  

 

The mapping / automorphism (m) acts on the roots like (1234) and the automorphism (n) 

Acts on the roots like (12)   .  With the indexing ( renaming ) of the roots , the Galois group  

of  f ( x )   =    x
4
  -  2 over Q  becomes  the group  of permutations in   S4    in the following 

table , It is isomorphic to   S4.  
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Automorphism ║  1    │   r     │     r 2    │      r 3  
  │     s    │     r s   │  r 2 s    │  r

3 
s  

………………………………………………………………………………………..  
  Permutation  ║  (1) │(1234)│(13)(24)│(1432)  │(24)   │(12)(34) │(13) │(14)(23) 

………………………………………………………………………………………….. 
                                              Table 2 

 

Example 2.4.  Consider  the polynomial  f ( x )  =  ( x
2
  - 2 )( x

3 
  -  3  ) 

Its roots / zeros are    

         r 1    =  √ 2  ,     r 2    =  -  √ 2 ,         r 3    =   √ 3  ,         r 4   =    -   √ 3 .   
 

Then  the Galois group  of  ( x
2
  -  2)( x

3
 - 3 )  over Q  becomes the  following subgroups  

of   S4.  

 

(2.2 )                      ( 1 ) ,    ( 12 ) ,   ( 34 )   ,   (12)( 34 ) .  

 

Renaming  the roots of   f ( x )  in different  ways  can  identify  the Galois  group with 

different  subgroups of  S n .   

. Example 2.5  Renaming      
 4√ n ,       i  4√ 2  ,     -  4√ n   ,   -   i 4√ n  

   In this order such as r 2   ,   r 4   ,   r 3,    r 1     identifies the Galois group of    x
4
 - 2  

Over Q  with  the subgroup of  S4   in the following table  3  , which is not the same  subgroup 

of  S4   in  the  above problem .       

 

Automorphism ║   1     │   r       │     r 2    │     r 3    │      s     │    rs     │    r2
 s   │    r3

 s  

------------------------------------------------------------------------------------------------------------     

Permutation    ║  (1)  │ ( 1243) │ (14)( 23) │(1342)│ ( 14)  │(13)(24) │(23) │(12)( 34) 

……………………………………………………………………………………………                                                     
                                                      Table 3 

 

Example 2. 6:   If we label   √ 2,   - √ 2,   √ 3,   - √ 3       in this order such as 

r2  ,  r4   ,  r1  ,  r3    then the Galois group  of  ( x
2
 – 2 )( x

2
 – 3 )  over  Q  comes into the  

following  subgroup  of   S4 .  

 

(2,3)             ( 1 ) ,    ( 13 ) ,    ( 24 )  ,  ( 13)( 24 ) .  

 

This is not the same subgroup as   (2.2) 

 

General Technique:     
 

(1) In general , associating  to each  mapping (r) in the Galois group  of  f (X)  over K its 

permutation on the roots of  f (X) , viewed as a permutation of the subscripts of the roots 

when we list  them  as  r1   ,   r2 ,    r3 , …….rn   is a homomorphism from the Galois group to  

Sn  .  This homomorphism is injective since its kernel is trivial an element of the Galois group 

that fixes every rI    is the identity on the splitting field.  

 

This technique  about the Galois group of a polynomial  with degree   n  as a subgroup  of  Sn   

is the original  viewpoint of  Galois [1]  ( The description of Galois theory in terms of field  

automorphisms is due to  Dedkind [2]  , with more abstraction , Artin [3]. 

 

2.  Two different choices for labeling the roots of f (X)   can lead to different  

Subgroups of Sn.  , but they will be conjugate subgroups.  For instance, the subgroups   
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                                                                                             1234 

in tables  2   and  3  are conjugate  by the permutation     (           ) =  ( 124 )      
                                                                                             2431 

 

Which is the permutation turning one indexing of the roots into the other, and the  
                                                                                   1234 

subgroups  (2.2)   and (2.3)  are conjugate  by      (            )    =   ( 1243 ) 
                                                                                  2413 

 

We can speak about Galois  groups of irreducible or reducible  polynomials , like X
4
 -  2   or   

( x
2
 - 2 )( x

2– 3 )  over Q  Galois group of irreducible polynomials has a special property  , 

called  “ transitivity  property “ . It is when Galois group is subgroup of Sp.  (p is prime )   A 

subgroup;  G  <  Sn   is called transitive  when, for any  i  ≠ j.  
In  { 1 , 2 , 3 , ……..n } , there is permutation in G sending i to   j  .  

 

Example 2.7 The subgroups of S 4 in table 2   and 3 are transitive.  This corresponds 

to the fact  that for any  two  roots of  T
4
  - 2   there is an  element  of its  Galois  group  over 

Q  taking the first  root for  the  second . 

 

Example 2.8  :  The subgroup  of    S4   in    ( x
2– 2 )( x

2
 - 3 ) is not transitive since no element 

of the subgroup  takes  1   to  3  . This   corresponds  to the fact  that  an element  of  G (√ 2 ,  
√ 3)  cannot  send  √ 2 to √ 3   .  
 

Being transitive is not a property of an abstract group. It is property of   Sn. A conjugate  

subgroup  of a  transitive  subgroup  of Sn     is  also  transitive  since  conjugation  on  Sn .  

Amounts to listing the numbers from1to n in a different order.  

 

Now we illustrate the following theorem by giving numerical examples with their solutions.  

Theorem:        
 

        Let   f (T) ε K [T] be a separable polynomial of degree n  

(a)   If f (T) is irreducible in K [T] then its Galois group over K has order divisible by n.    

(b)   The polynomial f (T) is irreducible in K [T] if and only if its Galois group over K   

        is a transitive subgroup .    

 

Example  (a) :  Let   f ( x )   =     x
4
  - 3 x

2
    - 10   =   ( x

2
 -  5 )( x

2 
+  2 ) 

 

     Its   zeros are   x   =   ± √ 5   ,    ± i√ 2 

 

      Extension field    =    Q [√ 5,  i√ 2 ]  
 

        Degree   =   4 

 

Possible automorphisms  are        √ 5    →   √ 5 

 

                                                            →  -  √ 5 

 

                                                  i √ 2    →   i √ 2 

                                                            →  - i √ 2                                                             
 

In detail all permutations /automorphisms  are:  
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                          √ 5             i  √ 2 

e  =              (                                  )             Order    =   1 

                         √ 5              i √ 2 

 

 

                 √ 5                 i √ 2 

A       =   (                                 )                  Order  =  2  

                  √ 5             -i  √ 2  
 

 

                   √ 5             i √ 2 

B      =   (                                )                    Order    =  2  

                 - √ 5           i √ 2 

 

                      √ 5                i √ 2 

A B     =   (                                  )              Order   = 2  

                   -  √ 5              - i √ 2 

Galois  Group   =  <  I ,  A , B ,  AB  >      order  of Galois group  =4  

 

The subgroups are   I, < A >,   < B >, < A B >.  The corresponding subgroups and 

 

 subfields along with their  orders are in the following table  

 

SUBGROUPS     NORMAL   ORDER   SUBFIELDS   POLYNOMIALS   DEGREE        

 

         G                      √                  4                Q                               Q                       1 

………………………………………………………………………………………………            
.      < A >                  √                2               Q [ √ 5 ]                 Q[ x 2 -  5 ]             2  

……………………………………………………………………………………………. 
      <  B >                  √               2                Q [ i √ 2 ]              Q [ x 2  

+ 2 ]            2 

………………………………………………………………………………………… 

     < AB >                 √               2                Q [ i  √ 10 ]            Q[  x 
2
  + 10 ]         2 

……………………………………………………………………………………………. 
          I                      √              1             Q [ x4

  - 3 x  - 10 ]      Q [ x 
4
 - 3 x  - 10 ]   4     

 

Order of each subgroup divides the order of order of Galois group i.e.,    4/2 = 2 

 

(b) The Galois group  of the above  polynomial  is transitive  , therefore  the  given  

       polynomial is  irreducible . 

  

Example.  (a)   Consider the symmetric group S 3   .  Its order is   │ S3 │ = 3.2.1 = 6 

                Its permutations are  

                                       1         2        3                                  1          2           3  

                      e = I   =   (                             )               C   = (                              ) 

                                        1         2       3                                 1        3          2 

  

                                     1        2        3                                      1         2         3 

                        A  =   (                          )                    D   =  (                                ) 

                                     2        3         1                                      3         2         1 
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                                     1        2        3                                       1            2            3 

                        B   = (                           )                   E  =    (                                       ) 

                                      3        1       2                                        2            1           3 

 

Subgroups of S 3     are        {   I   }      its order    is   1.  It divides the order of S3 

 

(E, C)   Its order is 2. It divides the order of S3.  i. e.,   6/2 = 3 

 

(e, D)   Its order is 2, It divides the order of S3.   i. e.,   6 / 2 = 3 

 

(e, E)   Its order is 2.  It divides the order of S3.   i. e.,   6 / 2 = 3.  

 

 

Example 2 Consider the4 symmetric group   S4.  Its order is = 4.3.2. 1 = 24  

 

Its some few subgroups are:   

 

{  e  ,  ( 123 ) , ( 132 ) }   . Its order is   3.  It divides the order of S 4 .i.e.    24/3 = 8 

 

{ e ,   ( 124 ) , ( 132 ) }  . Its order is   3. It divides the order of S 4   i.e.    24 / 3 = 8 

 

{E, (134), (143)}   Its order is 3. It divides the order of S 4. i.e.   24 / 3 = 8 

 

Other subgroups  of  S 4   are  of  orders    2 ,  4 , 6 , 8   . All these orders divide the order of   

S 4   .                                            
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